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ABSTRACT

This paper investigates conditions under which fxdd incomplete block designs enjoy weighted ogtiyna
with E-criterion establishing weighted intervals f6-optimal design. More so, a neighbourhood ofges for grouped
generalised divisible designs (GGDDs) maintainipg-Eoptimal in D (v, b, k) was also investigated eT-criterion was
shown to be closely related to efficiency balar®eunding arguments that are important tools in ltagkE-optimality
problems was employed; the standard bounds werergjered for seeking E-weighted optimaly@@ptimal) designs.
The optimal bound established the best conceivadilees of the criterion and thus the designs witdsé best values are

optimal.
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INTRODUCTION

In the design of experiments, optimal designs ackass of experimental designs that are optimai waspect to
some statistical criterion. According to Ipinyorf2012), under the design of experiments for estimgagtatistical models,
optimal designs allow parameters to be estimatddowt bias and with minimum variance. A non — opiirdesign
requires a greater number of experimental runsstionate the parameter with the same precision aspéimal design.
In practical terms, optimal experiments can redheecosts of experimentation. The optimality ofesign depends on the
statistical model and is assessed with respect $tastical criterion, which is related to the imace matrix of the
estimator. Specifying an appropriate model and i§peg a suitable criterion function both requirederstanding of

statistical theory and practical knowledge withigemg experiments.

Gupta et al (1999) and Gupta et al (2002) useddhm “weighted optimality” when comparing a grouptest
treatments with a group of control treatments. Tifferent sets of control, treatment — control arghtment — treatment
were considered to be estimated with unequal poeciPesign of experiments for which some of theatments are
controls has form a special perspective, been sixtely investigated in recent years. Notable amtivegmany papers
seeking optimal designs for test treatment versugrel experiments are Jacroux (1989), JacrouxMapindar (1989),
Majundar (1992, 1996), Majundar and Notz (1983) Shdaken (1991). Optimality work for T v C experintés a limiting

case, as the weight on the control treatment goés t

Kiefer (1975) introduced convex optimality functignon the information matrices and proved that batanc
incomplete block designs (BIBDs) are universallytimgl, i.e. minimise¢ (Cd) for every non — increasing, convex

permutation — invariani. Following closely on the heels of Kiefer's wodghn and Mitchell (1977), Cheng (1978, 1980)
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and Jacroux (1980) used computer search and tiedr@tguments to build optimal designs for theecia defined above,
all of which fall into Kiefer’'s frame work. More cently, Majundar and Notz (1983), Majundar (1988&¢roux and
Majundar (1989), Bagchi and Shah (1989), Bagchi Bedkum (1991), Bagchi (1996), Bagchi and Bagchio@),

Reck and Morgan (2005) and Morgan (2000, 2003, p@@ave been working on design optimality for vasalasses of

designs with blocking.

Let Y,; be the observation on experimental unit u in blpckhe commonly employed statistical model for any

block design d, which in many cases is justifidijjeandomization alone (Hinkelmann and Kemptho2@€8) is
Yy = 1+ T+ B + €y 1)
Where
1 = mean response over all treatment and blocks,
dw,) = the treatment assigned to unit u in block j byige d,
T4 = the effect of the treatment assigned to unit black j by design d,
B; = the effect of block j,

and thee; 's are uncorrelated, mean zero random variablégs aeimmon varianceg>. This model is employed in
most of the papers cited above. It is the basishf@information matrix mentioned earlier on. Weally assumed with no
loss of generality that the unit variabilie? is o = 1. The symbol n is used for the total numbergfezimental units,
n = bk

Weighted Optimality of Block Designs

Kiefer's design optimality is based on functions the information matrix that are invariant to treant
permutation, that iy (PGP") = ¢ (Cy) for any permutation matrix P. This implies eqirmterest in all treatments.
However, in practice there are many cases wheralhveatments are equally important. For instamee often encounter
experimental situations where some test treatmargsto be compared to a standard treatment (orataméatment).
Sometimes the control is included specifically &gify the expectation of large treatment effectatiee to control, after
which the important comparisons among test treatsnare performed. This indicates asymmetry of @geron test
treatments and the control treatment with (in tase) greater interest in test treatments tharra@omsymmetry of
treatment interest implies that optimality basedtlo@ information matrix should not be invariantalth permutations.
According to Wang (2009), with the premise of asyetnn interest, the approach here is to group itneats into several
subsets which are assigned distinct weights; lavgeight reflects greater interest placed on estilgatomparisons
involving the corresponding treatments. In situadidike that described above, this leads to a Zight design problem,

that is, the weights take only two values, with snell weight and v-1 larger, equal weights.
Definition 1

Let positive weights w w,, . . . w, be measures of interest on v treatments withoss$ lof generality
Yool w,= 1. Let W be a v x v diagonal matrix with im the I" diagonal position, that is, W = Diag jjwAlso, the square

root matrix for W is denoted as VThen the weighted information matrix,Gor design d is defined as
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Caw= W* Cq W= ((cai/ VWi W) @

The use of G, will be justified in the following facts. The keg ito see how applying weights tg @duces

weights on variances of treatment contrasts. Censiek spectral decomposition of thg,Ematrix:
Caw= W™ CW™ = 3721 6,1 . (3)

Where 6y < 6, < . . < 0,1 are the eigenvalues ofgfcand thef, are an orthonormal set of eigenvectors.
For connected designs, both &d G, are of rank v — 1, anéh = 0. Let w = (w, W, . . . , W))' be the vector of weights.
The eigenvector correspondingfigs fo = w? = (V wy, ¥ Wy, . ..,V w,)’

Basics for the Weightede- Criterion
Definition 2

The weightedE — value (written a%,) for a designd is the largest canonical weighted variance forigied.
That is,

Ew=— 4)

A designd is weightedE-optimal (or E,-optimal) in a design clasB if it minimises the largest canonical
weighted variance, that is, if

Eqw= min Egw ) (5
@D

Result 2: The weightede-value is the largest weighted variance over alitiment contrasts.

Proof 2: The largest weighted variance over all contrasts i
—~ / + ot
ar (c't)y _ W2/2Caw wyec \ _ Caw y
max %) = max %C’W'ic ) = max %)

c'1=0 '2=0 ywr2=0 (6)
w¥2 s an eigenvector df;,, corresponding to eigenvalue 0, so this is the Erggenvalue of,,, that is 10;.

Result says that af,-optimal design factors importance of contraste #sign selection in minimising impact
of the worst case. It can be seen that for anygdesncreasing the weight placed on a treatmemeases weighted
variances Vay (c't) = [c'Wc]™ Var (c'7) of contrasts in which it is involved. Minimisireummary functions of weighted
variances (that is, minimising functions 06;}/ pushes variances of treatments with higher vidighe smaller, this being

at the expense of variances of treatments withlesmakights.
STATEMENT OF THE PROBLEM

The general formulation on the studies of optingdiitr treatment comparison is based on the idetagibémality
functions of the treatment information matrix ardriant to treatment permutation which implies @dguterest in all
treatments. In practice, however, there are mangemxents where not all treatments are equally mmaod.
When selecting a design for such an experimentyoitild be better to weigh the information gathered different
treatments according to their relative importanod/ar interest. It is on this premise that thiseegsh work is based on
weighted optimality criteria.
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AIM AND OBJECTIVES

The broad objective of this research is to expleegghted optimality of incomplete block designs.eTdpecific
objectives are:

e To establish weighted intervals for E —weightedropt (E, — optimal) design covering possible Treatment with

Control (T,C) situation having smaller weight on contrast.

» A neighbourhood of weights for Grouped GeneraliBédsible Designs (GGDD) maintaining,& optimality in

D (v, b, k) is also investigated.
MATERIALS AND METHODS

The conventional criteria for evaluating designimjality are functions of the eigenvalues of theomnfiation
matrix G, in the same way, many of the weighted criteriactvlis used to evaluate design optimality are fiamcof the
weighted information matrix & . There are many statistical packages for anajyie information matrix of a design
optimality such as MINITAB, SPSS and R — Statistlosthis research, | made use of R — Statistiagkpge.

ANALYSIS OF RESULTS

This chapter deals with the analysis and interfiostadf data. | considered different designs ofadiént sizes for
E,,—optimality criteria and a neighbourhood of weifgttgrouped generalised divisible designs (GGDD).

Analysis and Results of Optimal Block Designs

Example 1: For vy = 6, w = 3, w = ¥, and w = %, the following design is E — optimality over
D (v, b, k) = (9, 11, 6)

1 1 1 1 1 2 2 2 3

[FT]
—

2 2 3 4 5 3 4 5 4 4 2
3 4 5 & & & 5 & 5 & 3
7 T 7 7 7 ) T 7 7 7 4
2 ] 2 2 2 ] ] 2 ] 2 5
] ] o ] [ [ ] [ 1] [ ]

It can be observed that the above design is bpilby adding the treatment 7, 8 and 9 to every blimck
BIBD (6, 10, 3), then appending symbols (1, . 6).,

Example 2: The following design in D (7, 17, 4) is,E optimal fory = {1, 2, 3}, w ={4, 5, 6, 7}, w = ¥ and

W, = Y6

2 I 2 1 2 2 2 2 22 2 2 2 2 2 2 5
. a o= o= e % o o omomoomomomomomoa s
a = a = = a a = = a a = = = a a Ly
4 4 4 4 5 553 5 6 6 6§ 6 7T 7T 7T 77T

Grouped Generalised Divisible Design
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Example 3: The following two designs are built up from BIBD, (7, 3). The first design adds= 1 copy of first
block in BIBD (7, 7, 3) to obtain a GGDD (2). Thecend one adds = 2 copies of the first block in BIBD (7, 7, 3).

Forw, =2, w =1, v =3 andy = 4, this design is /- optimal in D (v, b, k) = (7, 8, 3).

1 1 1 1 2 3 3 1
2 4 & 4 5 4 5 2
3 5 7 & 7 7 & 3

Forw, = %3, W, = %3, v; = 3 and y = 4, this design is f/ optimal in D (v, b, k)
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¥, = %, observed that2>, > ¥, so a = 1 (by theorem). It can be checked xh@t— k - 1)< 2 (k - 1), sad can
be any positive number. The designs constructeappgndingy copies of one block in the above BIBD arg-Eoptimal

inD (v, b, k) = (5, 10 b, 3) for vy = 3, », = 2 and""/w, = (A +b)/L =b/5 + 1.

Table 1: Parameters of Weight Balanced, Binary BldcDesigns

V| (vi,V2) | kK| b | ry | ra | M| Asa | Az | WyiW, | Design #
0] 9 4| 9| 1| 3| 31 1

19] 15| 9| 12| 3| 6| 24 2

51 @3 | 35018 8] 18] 2| 6] 31 3
30| 27| 12| 27 3| 9| 31 4

31 26| 21| 9| 18] 2| 6| 31 5

- 13| 12| 7| 12| 3| 6] 21 6

: 426 24| 14] 24] 6] 12 21 7

6 27 | 22| 16| 18] 8| 12 32 8
1] 7] 4| a| 1] 2] 21 9

3.3 | 322 14| 8] 8] 2| 4] 21 10

20| 22| 7| 16] 1| 4| 41 11

25 |2l 22| 18] 6] 16 1| 4 4 12

: 4 17| 14| 8| 12| 3| 6 21 13
Sl 50| 1] a| 2] 12 14

7 23] 15| 6] 9| 1| 3| 31 15
3. 4) 17| 16| 5| 16] 1| 4] 41 16
421 16| 9| 12| 3| 6] 21 17

23] 20| 8| 18] 2| 6] 31 18

2.6) | 4] 30| 27] 11 21 3 9 31 19
3.5) | 4] 26| 18] 1d 174 3] 6§ 2.1 20

8 18| 13| 5] 9] 1| 3| 31 21
@4 | 491712 9] 4| 6] 32 22
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Table 1:Contd.,

27 121241 15[ 6] o 1] 3] 3a 3
: 4] 241 20] 8] 18 2| 6] 31 24

o[ (.6 | 6] 21] 200 11 24 5 10 21 75
@ |Al26[ 616 1] 0| 3 13 26

: 51261 25| 6] 25| 1| 5| 51 27
2.8 | 4] 18] 16| 5 16 1| 4 (41 28

3] 25 11| 6] 4| 1| 2| 21 29

100 G7 s 3 7] 8] 2| 4| 21 30
5.5 | 5] 20] 13| 7| 8] 2| 4 21 31

2] (2,100 4] 19] 13 5 9 1 34 31 32

CONCLUSIONS

Weighted intervals for Ew — optimality was estaldid and it was shown to be closely related to iefiicy

balance. More so, bounding arguments establisheddlt conceivable value of E-criterion in thetfirsin result for

Ew-optimal ruling out classes of inferior designgasince each of these designs achieved the bastivable value

respectively and the & optimal designs for the 2 — weight problem vgtbup sizes 2 i.e. GGDD(2), the necessary and
sufficient condition for d to have weighted infortiaa matrix G, = € (I — w*? w “?) for some€ and some wand v are

met. Hence the designs considered in this papeyaré designs.
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